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An algorithm for computing solutions of overdetermined systems of linear
equations in n real variables which minimize the residual error in a smooth, strictly
convex norm in a finite dimensional space is given. The algorithm proceeds by
finding a sequence of least squares solutions of suitably modified problems. Most
of the time, each iteration involves one line search for the root of a nonlinear
equation, though some iterations do not have any root seeking line search.
Convergence of the algorithm is proved, and computational experience on some
numerical examples is also reported.' 1993 Academic Press, Inc.

L INTRODUCTION

In this paper we propose an algorithm for approximating solutions of
the overdetermined system of linear equations

Ax=h,

where A is an m x n real matrix, m, n ~ I, and hEIR"'; no special
assumption is made on the rank of A, We seek a minimizer of

Ilh-Axll,

the norm of the residual vector r(x) = h - Ax, when the norm is smooth
and strictly convex. In each iteration of the proposed algorithm, we modify
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the constant vector b twice and solve the resulting linear systems in the
least squares sense. We assume throughout that the system is inconsistent.

The algorithm and results of this paper easily extend to the slightly more
general problem of minimizing lib - zll, zE K, where K is a subspace of a
smooth, strictly convex, finite dimensional Banach space X and bE X\K.
Little, however, is gained by such an extension since, first, the extension is
immediate, and second, the most likely use of the algorithm is for solving
overdetermind systems of linear equations in the lp sense, i.e., minimizing
Ilb-Axllp, where 11·ll p is an lp norm, 1 <p< 00.

Many algorithms exist for solving overdetermined systems of linear
equations in the lp sense, 1~p ~ 00. See, for example, Fletcher, Grant, and
Hebden [5], Kahng [7], Merle and Spath [9], Owens [10], Spath [11],
Sreedharan [13,14], and Wolfe [18]. Any general purpose minimization
algorithm could, at least theoretically, be used to minimize lib - Axllp,
x E !R n

, but such an approach would not exploit the special structure of the
problem and is unlikely to be particularly efficient. When p = 1 or 00, linear
programming can be used effectively. See, for example, Barrodale and
Young [1], Chvatal [4], Wagner [17], and Zukhovitskiy and Aydeyeva
[19]. And when p = 2, very efficient techniques for solving the Ip problem
exists. See, for example, Bjorck [2], Golub and Van Loan [6], Lawson
and Hanson [8], and Sreedharan [16].

For 1 <p < 00, the function g(x) = lib - Axil; = E Ib i - (Ax);1 P, x E W, is
positive and differentiable, and hence, due to the convexity of the norm, g
is continuously differentiable. So minimizing g is equivalent to finding a
root of g'. The more effective the root finding method employed in [Rn, the
better this approach works, but the better the root finding method is,
generally, the more derivatives of the function g one needs. For p ~ 2,
Newton-type algorithms are available, but for I < p < 2, convergence
cannot be guaranteed without adding the restriction that ri(x) #- 0,
1~ i ~ m, a condition that cannot be know a priori. It is tempting,
nevertheless, to employ second order methods to solve lp problems with
1 < p < 2. See, for example, [11], where such methods are applied to
specific examples, and the numerical answers obtained are then checked a
posteriori to see whether they are the "right" answers. Such tests lend
credence to the applicability of second order methods, even when the
relevant hypotheses are violated, but such findings do not prove the
convergence of the algorithm.

The algorithm presented in this paper is shown to converge for any
smooth, strictly convex norm on [Rm. In particular, the algorithm is
applicable for the troublesome lp norms when 1 < p < 2. Moreover, our
algorithm performs well in Ip problems, 1< P < 2, when compared with
algorithms whose convergence in general cannot be established, such as
those presented in [11].
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In Section 2, we specify notation and terminology, and we introduce the
duality theory needed later in the paper. The algorithm is given in
Section 3. We establish the feasibility and convergence of the algorithm in
Section 4. Finally, in Section 5, we present some numerical results using the
usual lp norm.

2. PRELIMINARIES AND DUALITY THEORY

Throughout this paper, m ~ I. The standard inner product on IR'" IS

denoted by <', .), i.e.,

U, V E IR"',

U = (u l , ... , um ) and v = (VI' ... , vm ).

Let E be the orthogonal projection of ~m onto K = Ker(A T), where
orthogonality is with respect to the standard inner product and A T denotes
the transpose of the matrix A. K ~ = Im(A). Let s = Eb. Our earlier assump
tion guarantees that s i' O. Note that s is the least squares residual.

In terms of this notation, the problem which we address, referred to as
problem (P), is

Minimize lib - zll subject to z E K~. (P)

We assume that the norm 11·11 is smooth and strictly convex. The norm
is said to be smooth if and only if through each point of unit norm
there passes precisely one hyperplane supporting the closed unit ball
B = {x E ~m Illxll ~ 1}. The norm is said to be strictly convex if and only if
the unit sphere S = {x E W'lllxll = I} has no line segments on it.

In order to introduce a dual problem (P'), we define the dual norm 11·11'

on ~'" by

Ilyll' = max{ <x, y) Illxll = I, x E ~"'}.

Given Yi'O, we define y', a II· II-dual, and y*, a II·II'-dual, by

Ily'll = I, <y', y) = Ilyll' and Ily*II' = I, <y*, y) = Ilyli.

It is well know that if the norm 11·11 is strictly convex, then II· II-duals are
unique, see, e.g., [12]. The mapping v H Vi is continuous and positively
homogeneous of degree zero on ~"'\{O}; see, e.g., [14]. Similarly, if the
norm II ·11 is smooth, then II· II'-duals are unique and the mapping v H v* is
continuous and positively homogeneous of degree zero on ~"'\{O}. For
readers who wish to refresh their memory about this or need an explicit
proof of the fact the norm II ·11 is smooth if and only if the norm II ·11 I is
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strictly convex, we refer to Section 2 of [13]. Moreover, for v:f. 0, we have
the relations

v'* = vlllvll' and v*' = viII vII,

when the norm 11·11 is smooth and strictly convex, respectively. For proof
of these, see [14]. We use the continuity of the prime- and star-dual
mappings and the special form of their compositions often, and without
explicit reference, throughout this paper.

For the usual lp norm, I <p < 00, which is given by

Ilvllp = (.E IvjIP)I/p,

we have that II'II~ = 11·ll q , where p + q = pq. Given v # 0, then v', its
II· lip-dual, and v*, its II'II~-dual, have components v; and vi* given by

v; = (ivil/llvllq)q-t sgn V j ,

vj* = (Ivil/llvllpjP- L sgn vj,

i = I, ..., 111,

i= 1, ... , m,

respectively. Expressions for the 11·11- and 11·11 '-duals with respect to more
general weighted lp norms are given in [14].

With problem (P) we associate the following dual problem (P'):

Maximize <b, y> subject to y E K, II YII' = 1. (P')

Problems (P) and (P') are easily seen to be equivalent, respectively, to
the following problems:

Minimize lis - zll subject to z E KL, where s = Eb (P)

and

Maximize <s, Y> subject to y E K, Il.v II' = I. (P')

We use these versions throughout the sequel.
Because of finite dimensionality, problems (P) and (P') each have a

solution. If the norm 11·11 is strictly convex, then the solution of problem
(P) is unique, whereas if the norm 11·11 is smooth, then the solution of
problem (P') is unique. Note that the latter result follows from the
property we observed earlier, i.e., the norm 11·11 is smooth if and only if the
norm II '11' is strictly convex.

If we assume that the norm 11·11 is strictly convex, we have the following
duality theorem.
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2.1. THEOREM [12, Theorem 2.1]. Let y be a solution of problem (P').
Then the system of equations Ax = h - <b, y) y' is consistent. Furthermore,
any solution of this system is a solution ofprohlem (P), and the norm 11·11 of
the corresponding residual for prohlem (P) equals <b, y).

Paraphrasing this theorem in terms of K and K -l yields the following
statement.

2.2. THEOREM. Let y be a solution of problem (P'). Then u = s
<s, y) y' is the unique point in K -l nearest to s; v = b - <b, y) y' is also the
unique point in K -l nearest to b. Furthermore, the minimal norm 11·11 residual
t of problem (P) is given by

t = <s, y) y'

and

d(s, K-l)=d(h, K-l)= Iltll = <s,y),

where we have adopted the notation d(a, X)=inf{lla-xlllxEX}, for any
suhset Xc IR IIl and a E 1R 1Il

•

Henceforth we assume that the norm II . lion IRIIl is both smooth and
strictly convex. The reader will easily see that stronger theorems can be
proven by assuming only smoothness or strict convexity as the case
warrants. But this stronger assumption makes many statements simpler
and more elegant.

2.3. THEOREM. Let s = Eh # O. Suppose that t = s + u, with u E K -l. Then
t is the minimal norm 11·11 residual of problem (P) if and only if t* E K, in
which case t* is the maximizer for prohlem (P').

Proof Given the assumption that t* E K, we show that t* solves
problem (P') and that t is the minimal norm 11·11 residual of problem (P).
If yEK, Ilyll'= 1, then

<s, y) = <t, y) ~ Iltll.

Furthermore, when y = t*, equality holds, so we have

max{ <s, y) Iy E K, Ilyll' = l} = <s, t*) = Iltll,

completing the proof of the "if" part.
Conversely, let y be a maximizer for problem (P'). Then by Theorem 2.2,
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t, which is the minimal norm 11·11 residual of problem (P), satisfies the
equality Iltll = (s, y). Let v = till til, so that Ilvll = l. We now have

(v,y)=lltll- 1 (t,y)

= IItl1 1 (s+u,y)

= 1/ tl/ ~ I <s, y) = l.

This show that v = y', which in turn implies that t* = v* = y'* = y. Since
t* = y, t* solves problem (Pi) and belongs to K.

2.4. LEMMA. Let 0 ¥- s E K and y E K with II YII' = I and <s, y) > O. Define
t E IRm by

t=s+ <s,y)(I-E)y'. (2.4.1 )

Then Et* ¥- 0, i.e., t* fj K 1-.

Proof First note that since s is non-zero, t defined by (2.4.1) is non
zero, so that t* is well defined. Suppose Et* = 0, i.e., t* E K 1-. We shall
arrive at a contradiction.

Iltll = <t, t*)

= (s, t*) + (S,y)(y', t*)- <s,y)(Ey', t*)

= (s, Y ><.v', t*), since Et* = 0

~ (s, y). (2.4.2 )

This shows by well known duality theory that y is a maximizer for problem
(Pi) and that t is the minimal norm 11·11 residual for problem (P). So the
inequality in (2.4.2) is in fact an equality. But equality can appear in (2.4.2)
if and only if (/,t*)=l, since (s,y»O. This shows that t*=y and
hence YEKnK-L, which implies that y=O, a contradiction to Ilyll'= l.

The following characterization of an optimal solution of problem (P') is
crucial for this paper since it motivates the algorithm presented in the next
section. The algorithm approximates the solution of problem (P') by
constructing, at each iteration, a vector J'k that approximately satisfies the
hypotheses of the theorem.

2.5. THEOREM. Let s = Eb ¥- O. Suppose that t E IR m is such that

where

t = s + <s, y )(1- E) y',

y = Et*/IIEt*II'.

(s,y) >0,
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Then y is the maximizer of prohlem (P'), t is the minimal norm II ·11 residual
of prohlem (P), and y = t*.

Proof Note that Et* i= 0 by Lemma 2.4. First observe that for all z E K
with Ilzll' = 1 we have

(s,z)=(t,z), since ZEK and (I-E)Y'EK.L

:::; IItllllzll' = IItll· (2.5.1)

We now show that (s, y) = II til. We have

Iltll = (t, t*)

= (s, t*) + (s,y)(y', t*) - (s,y)(Ey', t*)

= (s, t*) + (s, y) (y', t*) - (s, Y) (y', Et*)

= (s, t*) + (s, y) (y', t*) - IIEt* II' (s, y) (y',y)

= (s, t*) + (s, y)(y', t*) - (s, Et*)

= (s,y)(y', t*):::; (s,y).

In view of (2.5.1) and (2.5.2) we have established

II til = (s, y) = max { (s, z) IzE K, Ilzll' = l},

(2.5.2)

i.e., y is the maximizer for problem (P') and t is the minimal norm 11·11
residual for problem (P). Also, since equality holds in (2.5.2), y = t*.

3. ALGORITHM

Step O. Let e > 0 be a stopping rule parameter. Let y I E K, II y III' = I,
(s, YI) > O. A convenient starting YI is YI = s/llsil'. Set k = 1.

Step 1. Let tk=s+ (s'Yk)(I-E)y~.

Step 2. If 1 - (s, Yk )/lltkll :::; e, go to Step 9. Otherwise continue.

Step 3. If II (I - E) t: 112 :::; e, set Yk = t: and go to Step 9. Otherwise
continue.

Step 4. Let rk = EtNIIEt:II'.

StepS. If (s,rk)(r~,Yk)~(S'Yk)'set Yk+,=rk, rJ.k=l, and go to
Step 8. Otherwise continue.

Step 6. Compute rJ. k E [0, 1] such that

(s,rJ.krk+(I-rJ.k)Yk)«(rJ.krk+(l-rJ.dYk)',rk-Yk)

= IIrJ.krk + (1 - rJ. k ) Ykll' (s, rk - Yk)'
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Step 7. LetYk+I=(lXkrk+(l-lXdYk)/lllXkrk+(1-lXdYkll'.

Step 8. Increment k by 1 and return to Step I.

Step 9. Accept Yk as the solution of problem (P') and tk as the
minimal norm 11·11 residual of problem (P). Find a least squares solution of
the system of linear equations Ax = b - t b and accept this solution x as the
solution of problem (P).

4. FEASIBILITY AND CONVERGENCE

4.1. LEMMA. Let O#sEK, and let yEK with Ilyll'=1 and <s,y»O.
Define t by

t=s+ (s,y)(l-E)y'.

Define r by

r=Et"'/IIEt*II'·

Let h = r - y. Consider <p: [0, 1] -+ rR defined by

<p(IX) = (s,y+IXh)/IIY+IXhll'.

Then

<p'(l) = (s, r)(r', y) - (s, y)

and

IIEt*II' <p'(O) = Iltll- <s,y)(y', t*)~O.

Furthermore, the last inequality is strict if t* tj; K.

Proof By Lemma 2.4, r is well defined. By (5.4.3) of [15],

, (s,h) (s,y+lXh)«y+lXh)',h)
cp (IX)= IIY+lXhll'- (1IY+lXhll')2

So

(4.1.1 )

(4.1.2 )

(4.1.3)

(4.1.4 )

(4.1.5)

(4.1.6)

, (s, h)
cp (1)= lIy+hll'

<s,y+h)«y+h)',h)

(1Iy+hll'f

which is (4.1.4).

= (s, r- y) - (s, r)(r', r- y)

= (s, r)(r', y) - (s, y), (4.1.7)
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By (4.1.6)

and hence
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cp'(O) = (S, r-y) - (S,y)(y', r-y)

= (S, r) - (S, y)(y', r) (4.1.8)

IIEt*II' cp'(O)= (S, Et*) - (S,y)(y', Et*)

= (S, t*) - (s,y)(Ey', 1*)

= (S- (S,y) Ey', t*)

=(t-(s,y)y',t*), by (4.1.1)

= Iltll- (s, y)(y', t*).

Also by (4.1.1), (t,y)= (s,y) and so

(s,y)(y', 1*)= (t,y)(y', t*)

~ IItll·

Strict inequality holds unless y = t*, which is excluded since t* ¢ K. This
proves (4.1.5) and the remark about strict inequality.

4.2. LEMMA. Let OofSEK, and let yEK Ivith lIyll'=1 and (s,y»O.
Define t hy

and

1 = S + (s, y)(I - E) y'

r = Et* /11 Et* II',

(4.2.1 )

(4.2.2)

We have

(i) If t* ¢ K, then rand yare linearly independent; and

(ii) rand yare linearly dependent if and only if r = y.

Proof By Lemma 2.4, Et* of 0, so r is well defined. rand yare linearly
dependent if and only if r= ±y, since Ilrll'= 1 = Ilyil'.

Let us prove (i). If r = y, by Theorem 2.5, t* E K, a contradiction to our
hypothesis. So consider the possibility r = - y. By Lemma 4.1, cp'(O) > O.
Inserting r= -y in (4.1.8), we see

-(s,y)-(s,y)(y', -y»O,

i.e., 0> 0, a contradiction, completing the proof of (i).
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The "if" part of (ii) being clear, we turn to the verification of the "only
if" part of (ii). To do this we need to rule out the possibility r= -yo
Assume for the purpose of arriving at a contradiction that r = - y. Since
rand yare linearly dependent, by (i), t* E K. So Et* = t* and
r=Et*/IIEt*II'=t*, which shows that t*= -Yo Now

Iltll=(t,t*)=(s,t*), by (4.2.1)

= - (s, y).

This shows that (s, y) < 0, a contradiction.

4.3. LEMMA. The sequence (S'Yk») generated by the algorithm is
strictly increasing.

Proof The algorithm will not terminate at the kth iteration if and only
if a duality gap is detected in Step 2 and rt ¢ K, by Step 3. Let

so that

and

Since t: If K, by Lemma 4.1

IIEt:II' <p'(0) = Iltkll- (rk>Yk)(Y~' tn >0,

which shows that <p'(0) > O.
Now if the question in Step 5 is answered affirmatively at the kth

iteration, then due to (4.1.4), <p'(I) ~ O. By Corollary 5.7 of [15], this
implies that 1 is a global maximizer of <p on [0, 1]. So <p( 1) > <p(0), the
strict inequatlity being a consequence of the fact that <p'(0) > O. Thus we
have shown that (s,rk»(s,Yk), i.e., (S'Yk+l»(S'Yk)'

On the other hand, if the question in Step 5 is answered negatively at the
kth iteration, then in view of (4.1.4), this will be due to <p'(I) <0. In this
case, there exists ak E (0, 1) maximizing <p on [0, 1]. This ak is determined
in Step 6 of the algorithm via the condition <p'(ad=O, where (4.1.6) is
used. By Step 7 of the algorithm we get

(S, Yk+ 1) > (s, Yk)' (4.3.1 )

Once more the strict inequality is a consequence of <p'(0) > O. Thus we
always have (4.3.1), which is the lemma.

4.4. COROLLARY. The sequence (s, Yk » converges to a positive limit p.
Furthermore (s,y)=pfor every cluster point Y of the sequence (Yk)'
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Proof The inequality (s, Yk) :;,:;; Iisil proves that the sequence (s, Yk»)
is bounded and hence (s, lk) -+ p. The corollary is now clear.

4.5. LEMMA. Let 0""" sE K and Cvd a sequence from K with IIYkll' = I,/or
all k. Suppose there exists l > 0 such that (s, Yk) ~ A, for all k. Then the
sequence (tk) given by

(4.5.1 )

is such that the sequence (Ett) is well defined and bounded away from zero.

Proof As in the proof of Lemma 2.4, one sees that the tk are non-zero
and so the t-: are well defined for every k. By Lemma 2.4, Et-: """ 0, for all
k. If the conclusion of the present lemma were false, we could find a
subsequence (k') such that Ett- -+ O. Since II yd' = I, for all k', we can pass
to another subsequence, again denoted by (k'), such that Yk' -+ y, where
y E K and II YII' = I. From (4.5.1) we conclude that tk , -+ t, where t is given
by

t=s+ (s,y)U-E)y', (s, y) > O. (4.5.2)

Equation (4.5.2) implies that t """ 0 and so tt, -+ t*. Since Ett, -+ 0, we must
have Et* = O. This contradicts Lemma 2.4 in view of (4.5.2).

4.6. THEOREM. The algorithm generates sequences (Yd and (td, which
either terminate at or converge to the maximizer of problem (P') and the
minimal norm 11·11 residual of problem (P), respectively.

Proof We emphasize that we are assuming the norm 11·11 to be both
smooth and strictly convex. The algorithm terminates at the kth iteration
if and only if tt E K. In this case, by Theorem 2.3, tk is the minimal 11·11

residual of problem (P) and one sees that Yk in Step 9 of the algorithm
solves problem (P').

Consider the situation in which t-: rt K, for all k, so we have an infinite
sequence (yd. Let }' be any cluster point of (lk), so that there exists a
subsequence (lk') of (yd such that Yk' -+ y, We distinguish two cases; they
are not mutually exclusive but are jointly exhaustive.

Case I. Suppose there exists an infinity of indices among the k' for
which the question in Step 5 of the algorithm is answered affirmatively.
Denote this subsequence once more by (k'). By Lemma 4,5, IIEt:II' is
bounded away from zero, so there exists r, with Ilrll' = 1, such that, passing
to a further subsequence if necessary, again denoted by (k'), we have
Yk' + I = rk' -+ r. This, in particular, implies that r is a cluster point of the
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sequence (Yk)' Writing the inequality in Step 5 of the algorithm for each k'
and allowing k' --+ 00, we get the inequality

(s, r>(r',y> ~ (s,y>. (4.6.1 )

Since rand yare cluster points of (yd, by Corollary 4.4, (s, r> = (s, .v>.
This yields the inequality (r',y>~1. But Ilr'II=1 and Ilyll'=I, so
(r', y> = 1, which in turn implies that y = r. Writing the expressions in
Steps 1 and 4 of the algorithm for each k' and allowing k' --+ 00, we find

and

1= s + (s, y >(/ - E) y'

r=Et*/IIEI*II',

(4.6.2)

(4.6.3)

where 1 = lim t k ,. Since we have shown y = r, Theorem 2.5, in view of (4.6,2)
and (4,6.3), shows that y is a maximizer for problem (P').

Case 2, Among the chosen subsequence (k'), suppose there exists an
infinity of indices, again denoted k', for which the question in Step 5 of the
algorithm is answered negatively. By passing to a further subsequence if
necessary, denoted once more by k', we can assume that Cl. k , --+ CI. E [0, 1].
Let rk' -+ rand I k , --+ I. This results in (4.6,2) and (4.6.3) holding once more.
We want to show that y is a maximizer for problem (P') and that y = t*.
If the vectors rand yare linearly dependent, then by Lemma 4.2(ii) we see
that r = y, and hence by Theorem 2,5, y is a maximizer for problem (P')
and 1 a minimal norm 11·11 residual of problem (P).

In view of this, we need to consider only the situation where the vectors
rand yare linearly independent. In this case, we claim thatCl. = 0 and
y = 1* is a maximizer for problem (P'). Let us verify this. Due to the linear
independence of rand y

P= IICl.r+(l-Cl.)}'II'>O. (4.6.4 )

Writing Steps 6 and 7 of the algorithm for the indices k' and allowing
k' -+ 00, we get

pW=Cl.r+(I-Cl.)y

and

(s, W>(I1", r- y> = (s, r-y>,

where w is the limit of the sequence (Yk' + I)'

(4.6.5)

(4.6.6)
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If :x > 0, we derive a contradiction. It follows from (4.6.5) and (4.6.6) that

(.I', w)(w', pw - y) = (s, pw- y),

p(s, 11') - (.I', w)(w', y) = p(.I', 11') - (.I', y),

i.e.,

(.I', w)(w', y) = (.I', y). (4.6.7)

Since Yk' + I ---> wand Yk' ---> Y, by Corollary 4.4, (.I', 11') = (.I', y). We have
therefore shown that

(w',y)=I, (4.6.8)

which in turn implies that y = It'. By (4.6.5) this means that py =
:xr + (1 -:x) y, which contradicts our current assumption that rand yare
linearly independent. We have just seen that assumption :x> 0 is untenable,
so we conclude that :x = O.

Since :x = 0, by (4.6.4) and (4.6.5), p = 1 and w = y. Inserting this in
(4.6.6) yields

I.e.,

(.I',y)(y', r-y) = (.I', r-y),

(.I',y)(y', r) = (.I', r).

(4.6.9)

(4.6.10)

In this case also, t and r are given by (4.6.2) and (4.6.3) above. So by
(4.6.2),

Iltll = (t, t*)

= (.I', t*) + (.I',y)(y', t*) - (.I',y)(Ey', t*).

Now

(.I',y)(Ey', t*) = (.I',y)(y', Et*)

= IIEt*II' (s,y)(y',r)

= IIEt*II' (.I', r), by virtue of (4.6.10)

= (.I', Et*) = (.I', t*).

Inserting this in (4,6.11) shows that

Iltll = (.I',y)(y', t*).

(4.6.11 )

(4.6.12)
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By a now familiar argument, (4.6.12) tells us that Y is a maximizer for
problem (P') and that Y = t*.

So we have shown that every cluster point of (Yk) is a maximizer for
problem (P'). But maximizers for problem (P') are unique. Since (Yd is
bounded, in addition, this shows that the entire original sequence (Yk)
converges to Y, the maximizer of problem (P'). Consequently the entire
sequence (td also converges to t, the minimal norm 11·11 residual of
problem (P), concluding the proof of the theorem.

5. NUMERICAL RESULTS

Since the chief application of the algorithm is to solving overdetermined
systems of linear equations in the lp sense, 1 < P < 00, we discuss briefly our
computational experience with four test problems of this type.

The algorithm was programmed in Microsoft BASIC for a Macintosh
Plus and was executed using the "decimal" version of the software. This
yields up to 14 digits of precision. In all examples, we used

i.e., the relative duality gap being less than 10 -10, as our stopping criterion.
While the stopping parameters employed yield more correct decimal digits
of the lp norm of the residual than are displayed, it was necessary for the
Xk to be determined to the precision given in the tables. Note that (s, Yk >
is guaranteed by Lemma 4.3 to increase, but II tk II need not be strictly

TABLE I

Number of
p iterations XI X2 P

7 81 1.500985 -0.499662 0.02911148
6 46 1.501486 -0.499711 0.02990692
5 19 1.502293 -0.499813 0.03105973
4 9 1.503757 -0.500057 0.03287394
3 4 1.506860 -0.500710 0.03612070
2 0 1.514762 -0.502571 0.04321596
1.8 3 1.517371 -0.503201 0.04566427
1.6 7 1.519679 -0.503750 0.04879303
1.5 16 1.520005 -0.503800 0.05079019
1.4 " 1.520126 -0.503787 0.05327584
1.3 15 1.520215 -0.503744 0.05643632
1.2 23 1.520187 -0.503621 0.06054325
1.1 65 1.520037 -0.503390 0.06597922

640.03/2-6
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decreasing. Consequently, the relative duality gap, 1- <s,Yk)/lItkll,
may not accurately measure the actual duality gap at the kth step,
min{lItillll~i~k}-max{<s'Yi)ll~i~k}. In our computations, we
used the actual relative duality gap rather than the one given in Step 2 of
the algorithm.

In each problem, the algorithm was started with the 12 solution as called
for in Step 0 of the algorithm. Faster convergence should be expected if the
computed solution of one Ip problem were used as the starting point for
another lp problem when the p values were close.

The first example comes from Barrodale and Young [I] and has been
used by us [10, 15] before for testing various lp solving algorithms. The
system of equations is

Xl = 1.52

X, + X2 = 1.025

X, + 2X2 = 0.475

X I + 3x2 = 0.01

Xl + 4X2 = -0.475

x, + 5x2 = -1.005.

The result for this example are given in Table I.
The second example, form Cheney [3], has also been used before. This

TABLE II

Number of
p iterations x, -'"2 P

12 5 2.031705 1.975186 1.1060004
10 4 2.033339 1.970344 1.1341845
8 4 2.035508 1.962903 1.1793407
7 4 2.037010 1.957411 1.2134151
6 4 2.039030 1.949829 1.2609743
5 4 2.041951 1.938681 1.3313999
4 3 2.046597 1.920704 1.4451697
3 3 2.055106 1.887133 1.6565790
2 0 2.074118 1.807843 2.1659214
1.8 2 2.080147 1.780725 2.3631959
1.6 4 2.086123 1.751942 2.6312029
1.5 5 2.088349 1.740083 2.8048045
1.4 7 2.089486 1.732762 3.0168590
1.3 15 2.089512 1.730458 3.2823540
1.25 116 2.089300 1.73037 3.4418323
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system poses special difficulties because the solution of the /, problem is
not unique. The system of equations is

x,+x2 =3

x l -x2 =1

x, +2x2 =7

2x, + 4x 2 = 11.1

2x 1 +x2 =6.9

3x, + X 2 = 7.2.

The results for this example are given in Table II.

TABLE III

[II, Example 3] [II, Example 9]

39 144 84 46 354
47 220 73 20 190
45 138 65 52 405
47 145 70 30 263
65 162 76 57 451
46 142 69 25 302
67 170 63 28 288
42 124 72 36 385
67 158 79 57 402
56 154 75 44 365
64 162 27 24 209
56 150 89 31 290
59 140 65 52 346
34 110 57 23 254
42 128 59 60 395
48 130 69 48 434
45 135 60 34 220
17 114 79 51 374
20 116 75 50 308
19 124 82 34 220
36 136 59 46 311
50 142 67 23 181
39 120 85 37 274
21 120 55 40 303
44 160 63 30 244
53 158
63 144
29 130
25 125
69 175
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In the tables, p is the lp norm of the residual.
The final two exapmles are from Spath [11, Sect. 2.3, Examples 3 and

9]. Example 3 involves 30 equations in 2 unknowns, i.e., m = 30 and n = 2,
and Example 9 involves 25 equations in 3 unknowns, i.e., m = 25 and n = 3.
The data are given in Table III with the first n - I columns being the
columns of the matrix A and the last column being the vector b. Our
computed results agree with those in [II], but for completeness we include
Table IV which gives those results, including the number of iterations
required by Spath's algorithm for the values of p reported in [11]. Since
we used different stopping criteria than Spath, in many cases the number
of iterations needed simply to replicate Spath's results was less than the
number of iterations reported in Table IV.

The data indicate that the algorithm solves the overdetermined system of
linear equations in the lp sense in a small number of iterations for, roughly,
1.3 < p < 4. In particular, the algorithm converged rapidly for many values
of p between I and 2.

A number of computational difficulties limited the performance of the
algorithm; all seem to be related to the "flatness" of the lp unit ball for p

TABLE IV

Example 3

p Spath New p Xl X 2

1.1 21 17 223.1692 97.97677 0.9657306
1.2 7 8 183.0499 98.44222 0.9539866
1.4 9 7 137.2612 98.60850 0.9507508
1.7 4 4 105.8416 98.57653 0.9576799
2.0 1 0 91.61574 98.71472 0.9708704
2.5 6 7 80.92868 100.3369 0.9963743
4 9 21 68.09558 109.0846 1.035749

Example 9

p Spath New p XI x 2 X.,

1.1 24 135 622.6518 71.09920 0.6307726 4.931349
1.2 23 25 504.3896 71.69126 0.6075366 4.963526
1.4 12 49 364.0865 72.05922 0.5684263 5.038356
1.7 8 4 260.0769 72.39818 0.5111204 5.155066
2.0 1 0 206.8967 77.98254 0.4173621 5.216591
2.5 6 5 161.2907 86.68675 0.2974348 5.255274
4 10 Did not 114.9529 102.4825 0.1023005 5.283938

converge
in 300

iterations
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large or very near 1. From lip + lip = 1, we see that when p is large, q - 1
is positive and small, and when p is close to 1, q is large. In either case, the
computation of the prime- and the star-dual vectors used in the algorithm
calls for raising numbers to exponents that are either very small and
positive or very large. Both are computationally unstable.

A second difficulty involved finding ak in Step 6. Letting t/J: [0, 1] -+ IR1
by

t/J(a) = <s, ark + (1 -a) Yk>«ark+ (1 -a) yd', rk - J'k >
-ilark + (1- ex) J'kll' <s, rk - Yk >,

we seek ab the root of t/J(a) = O. The root finding method used to find ak
affects how long the algorithm will take to converge, but not significantly
the number of iterations of the algorithm are needed for convergence, so we
did not expend a great deal of effort optimizing our root finding sub
algorithm. We accepted IX as the desired root if either It/J(IX)I < 10 - 18 or the
length of the interval on which the root lay was less than 10 -12. For p large
or close to 1, the accurate determination of ak became increasingly difficult.

Finally, while the algorithm forces <s, J'k> to increase at each interation,
we do not know by how much it will increase, nor do we have a guarantee
that the norm of the residual, Iltkll p , will decrease at each iteration. For p
large or near 1, <s, Yk + I >- <s, Yk >was small compared to the duality gap
Iltkll p - <s,J'k)' and Iltkll p , while converging to its minimum value,
appeared to oscillate between two sequences of slowly decreasing values
which differ by roughly one order of magnitude.
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